Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(48): 9413-9427, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014426

RESUMO

The rheology, stability, texture, and taste of mayonnaise, a dense oil-in-water (O/W) emulsion, are determined by interfacially active egg lipids and proteins. Often mayonnaise is presented as a challenging example of an egg-based food material that is hard to emulate using plant-based or vegan ingredients. In this contribution, we characterize the flow behavior of animal-based and plant-based mayo emulsions, seeking to decipher the signatures that make the real mayonnaise into such an appetizing complex fluid. We find that commercially available vegan mayos can emulate the apparent yield stress and shear thinning of yolk-based mayonnaise by the combined influence of plant-based proteins (like those extracted from chickpeas) and polysaccharide thickeners. However, we show that the dispensing and dipping behavior of egg-based and vegan mayos display striking differences in neck shape, sharpness, and length. The ratio of apparent extensional to shear yield stress value is found to be larger than the theoretically predicted square root of three for all mayo emulsions. The analysis of neck radius evolution of these extension thinning yield stress fluids reveals that even when the power law exponent governing the intermediate pinching dynamics is similar to the exponent obtained from the shear flow curve, the terminal pinching dynamics show strong local effects, possibly influenced by interstitial fluid properties, finite drop size and deformations, and capillarity.


Assuntos
Cicer , Animais , Humanos , Veganos , Reologia , Emulsões
2.
Langmuir ; 39(16): 5761-5770, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37040267

RESUMO

Freestanding films of soft matter drain via stratification due to confinement-induced structuring and layering of supramolecular structures such as micelles. Neutral polymers, added as rheology modifiers to cosmetics, foods, pharmaceuticals, and petrochemical formulations, often interact with monomers and micelles of surfactants, forming polymer-surfactant complexes. Despite many studies that explore interfacial and bulk rheological properties, the corresponding influence of polymer-surfactant complexes on foam drainage and lifetime is not well understood and motivates this study. Here, we report the discovery and evidence of drainage via stratification in foam films formed with polymer-surfactant (PEO-SDS) complexes. We show that the stratification trifecta of coexisting thick-thin regions, stepwise thinning, and nanoscopic topological features such as nanoridges and mesas can be observed using IDIOM (interferometry, digital imaging, and optical microscopy) protocols we developed for nanoscopic thickness mapping. We determine that for polymer concentrations below overlap concentration and surfactant concentrations beyond the excess micelle point, polymer-surfactant complexation impact the nanoscopic topography but not the step size, implying the amplitude of disjoining pressure changes, but periodicity remains unchanged.

3.
Soft Matter ; 17(39): 8915-8924, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34545906

RESUMO

Sodium naphthenates (NaNs), found in crude oils and oil sands process-affected water (OSPW), can act as surfactants and stabilize undesirable foams and emulsions. Despite the critical impact of soap-like NaNs on the formation, properties, and stability of petroleum and OSPW foams, there is a significant lack of studies that characterize foam film drainage, motivating this study. Here, we contrast the drainage of aqueous foam films formulated with NaN with foams containing sodium dodecyl sulfate (SDS), a well-studied surfactant system, in the relatively low concentration regime (c/CMC < 12.5). The foam films exhibit drainage via stratification, displaying step-wise thinning and coexisting thick-thin regions manifested as distinct shades of gray in reflected light microscopy due to thickness-dependent interference intensity. Using IDIOM (interferometry digital imaging optical microscopy) protocols that we developed, we analyze pixel-wise intensity to obtain thickness maps with high spatiotemporal resolution (thickness <1 nm, lateral ∼500 nm, time ∼10 ms). The analysis of interference intensity variations over time reveals that the aqueous foam films of both SDS and NaN possess an evolving, dynamic, and rich nanoscopic topography. The nanoscopic thickness transitions for stratifying SDS foam films are attributed to the role played by damped supramolecular oscillatory structural disjoining pressure contributed by the confinement-induced layering of spherical micelles. In comparison with SDS, we find smaller concentration-dependent step size and terminal film thickness values for NaN, implying weaker intermicellar interactions and oscillatory structural disjoining pressure with shorter decay length and periodicity.

4.
Soft Matter ; 17(25): 6116-6126, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34076659

RESUMO

Understanding and characterizing the influence of polymers and surfactants on rheology, application, and processing is critical for designing complex fluid formulations for enhanced oil recovery, pharmaceuticals, cosmetics, foods, inks, agricultural sprays, and coatings. It is well-established that the addition of anionic surfactant like sodium dodecyl sulfate (SDS) to an aqueous solution of an oppositely-charged or uncharged polymer like poly(ethylene oxide) (PEO) can result in the formation of the polymer-surfactant association complexes (P0S-ACs) and a non-monotonic concentration-dependent variation in zero shear viscosity. However, the extensional rheology response of polymer-surfactant mixtures remains relatively poorly understood, partially due to characterization challenges that arise for low viscosity, low elasticity fluids, even though the response to strong extensional flows impacts drop formation and many processing operations. In this article, we use the recently developed dripping-onto-substrate (DoS) rheometry protocols to characterize the pinching dynamics and extensional rheology response of aqueous P0S- solutions formulated with PEO (P0) and SDS (S-), respectively. We find the PEO-SDS mixtures display a significantly weaker concentration-dependent variation in the extensional relaxation time, filament lifespan, and extensional viscosity values than anticipated by the measured shear viscosity.


Assuntos
Polímeros , Tensoativos , Reologia , Dodecilsulfato de Sódio , Viscosidade
5.
Soft Matter ; 17(20): 5197-5213, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33942820

RESUMO

Nail lacquer formulations are multi-ingredient complex fluids with additives that affect color, smell, texture, evaporation rate, viscosity, stability, leveling behavior, consumer's sensory experience, and dried coating's decorative and wear performance. Optimizing and characterizing the formulation rheology is critical for achieving longer shelf-life, better control over the nail painting process and adhesion, continuous manufacturing of large product volumes, and increasing overall consumer satisfaction. Dispensing, bottle filling, brush application, and dripping, as well as perceived tackiness of nail polishes, all involve capillarity-driven pinching flows associated with strong extensional deformation fields. However, a significant lack of characterization of pinching dynamics and extensional rheology response of multicomponent formulations, especially particle suspensions in viscoelastic solutions, motivates this study. Here, we characterize the shear rheology response of twelve commercial nail lacquer formulations using torsional rheometry and characterize pinching dynamics and extensional rheology response using dripping-onto-substrate (DoS) rheometry protocols we developed. We visualize and analyze brush loading, nail coating, dripping from brush, sagging, and lacquer application on a nail to outline the challenges posed by free-surface flows and non-Newtonian rheology. We find that the radius evolution over time obtained using DoS rheometry displays power law exponents distinct from those exhibited in shear thinning. Both shear and extensional viscosity decrease with deformation rate. However, the extensional viscosity appears to be rate-independent at the highest rates and displays nearly an order of magnitude larger values than the high shear rate viscosity. We envision that the findings and protocols described here will help and motivate industrial scientists to design better multicomponent formulations through a better characterization and understanding of the influence of ingredients like particles and polymers on rheology, processing, and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...